Tiamin Pirofosfatın Sıçanlarda Favipiravir ile İndüklenen Dejeneratif Kornea ve Skleral Hasarına Etkisinin Biyokimyasal ve Histopatolojik Değerlendirmesi
Araştırma Makalesi
DOI:
https://doi.org/10.5281/zenodo.8180526Anahtar Kelimeler:
Favipiravir,, Oküler Toksisite,, Oksidatif Stres,, Tiamin Pirofosfat.Özet
Giriş: Favipiravir yüksek dozlarda oküler toksisiteye neden olmaktadır. Tiamin pirofosfat (TPP) tedavisi oksidatif hasarı tersine çevirerek oküler hasarı önleyebilir.
Amaç: Favipiravirin sıçanlarda oküler etkisini araştırmak ve favipiravirin olası oküler toksisitesine karşı TPP koruyucu etkisini belirlemek.
Yöntem: Sıçanlar rastgele üç gruba ayrıldı; sağlıklı kontrol (HC), favipiravir uygulanan (FAV) ve TPP + favipiravir (TFAV) uygulanan. TFAV grubuna TPP intraperitoneal olarak 25 mg/kg dozunda enjekte edildi. HC ve FAV gruplarında çözücü olarak distile su uygulandı. Bir saat sonra FAV ve TFAV gruplarına günde 2 kez 200 mg/kg oral sonda ile favipiravir uygulandı. TPP günde bir kez enjekte edildi. Bu prosedür bir hafta boyunca tekrarlandı. Tüm sıçanlar anestezi altında sakrifiye edildi ve biyokimyasal parametreler ve histopatolojik seviyeleri analiz edildi.
Bulgular: FAV grubunun diğer gruplara göre kan MDA düzeylerinin daha yüksek (p<0.001), tGSH, SOD ve CAT düzeylerinin daha düşük olduğu (p<0.001) belirlendi. HC ve TFAV gruplarının MDA düzeyleri benzerdi (p=0,407). Ayrıca TPP, tGSH, SOD ve CAT'deki azalmayı da inhibe etti (p<0.001). tGSH ve CAT açısından HC ve TFAV grupları arasında anlamlı fark yoktu (p>0,05). Histopatolojik incelemelerde FAV grubunda kornea ve sklera dokularında ileri derecede kollajen lif dejenerasyonu ve orta derecede hiperemi gözlendi.
Sonuç: Çalışmanın bulguları, favipiravirin oksidatif hasar yoluyla kornea ve sklera dokusunda hasara neden olduğunu ve TPP'nin bu hasarı azalttığını gösterdi. Çalışma sonuçlarımız, TPP'nin favipiravirin neden olduğu oküler toksisitede faydalı olabileceğini düşündürmektedir.
Anahtar Kelimeler: Favipiravir, Oküler Toksisite, Oksidatif Stres, Tiamin Pirofosfat.
Referanslar
Łagocka R, Dziedziejko V, Kłos P, Pawlik A. Favipiravir in therapy of viral infections. Journal of Clinical Medicine. 2021;10(2):273. https://doi.org/10.3390/jcm10020273
Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Research. 2013;100(2):446-54. https://doi.org/10.1016/j.antiviral.2013.09.015
McCreary EK, Pogue JM. Coronavirus disease 2019 treatment: a review of early and emerging options. Open Forum Infectious Diseases. 2020;7(4):ofaa105. https://doi.org/10.1093/ofid/ofaa105
Hashemian SM, Farhadi T, Velayati AA. A review on favipiravir: the properties, function, and usefulness to treat COVID-19. Expert Review of Anti-infective Therapy. 2021;19(8):1029-1037. https://doi.org/10.1080/14787210.2021.1866545
Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Research 2018;153:85-94. https://doi.org/10.1016/j.antiviral.2018.03.003
Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacology & Therapeutics. 2020;209:107512. https://doi.org/10.1016/j.pharmthera.2020.107512
Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 - final report. New England Journal of Medicine. 2020;383(19):1813-1826. https://doi.org/10.1056/NEJMoa2007764
Pilkington V, Pepperrell T, Hill A. A review of the safety of favipiravir - a potential treatment in the COVID-19 pandemic? Journal of Virus Eradication. 2020;6(2):45-51. https://doi.org/10.1016/S2055-6640(20)30016-9
Chen C, Zhang Y, Huang J, et al. Favipiravir versus arbidol for clinical recovery rate in moderate and severe adult COVID-19 patients: A prospective, multicenter, open-label, randomized controlled clinical trial. Frontiers of Pharmacology. 2021;12:683296. https://doi.org/10.3389/fphar.2021.683296
Doğan E, Çeviker S, Vurucu S, et al. Investigation of the frequency of adverse effects in patients treated with favipiravir as SARS-CoV-2 treatment. Klimik Journal. 2021:34(2):95-98. https://doi.org/10.36519/kd.2021.3563
Doran MA, Aytogan H, Ayıntap E. Fluorescence of ocular surface in a Covid -19 patient after favipiravir treatment: a case report. Virology Journal. 2021;18(1):146. https://doi.org/10.1186/s12985-021-01610-3
Kara A, Yakut S, Caglayan C, Atçalı T, Ulucan A, Kandemir FM. Evaluation of the toxicological effects of favipiravir (T-705) on liver and kidney in rats: biochemical and histopathological approach. Drug and Chemical Toxicology. 2023;46(3):546-556. https://doi.org/10.1080/01480545.2022.2066116
Gangolf M, Czerniecki J, Radermecker M, et al. Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. Plos One. 2010;5(10):e13616. https://doi.org/10.1371/journal.pone.0013616
Cinici E, Cetin N, Ahiskali I, et al. The effect of thiamine pyrophosphate on ethambutol-induced ocular toxicity. Cutaneous and Ocular Toxicology. 2016;35(3):222-227. https://doi.org/10.3109/15569527.2015.1077857
Cinici E, Ahiskali I, Cetin N, et al. Effect of thiamine pyrophosphate on retinopathy induced by hyperglycemia in rats: A biochemical and pathological evaluation. Indian Journal of Ophthalmology. 2016;64(6):434-439. https://doi.org/10.4103/0301-4738.187666
Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta. 1991;196(2-3):143-151. https://doi.org/10.1016/0009-8981(91)90067-m
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976;72:248-254. https://doi.org/10.1006/abio.1976.9999
Zi Y, Deng Y, Zhao J, et al. Morphologic and biochemical changes in the retina and sclera induced by form deprivation high myopia in guinea pigs. BMC Ophthalmology. 2020;20(1):105. https://doi.org/10.1186/s12886-020-01377-1
Suresh PK, Sah AK, Daharwal SJ. Role of free radicals in ocular diseases: An overview. Research Journal of Pharmacy and Technology. 2014;7(11):1330-1344.
Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Medicine and Cellular Longevity. 2016;2016:3164734. https://doi.org/10.1155/2016/3164734
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Longevity. 2014;2014:360438. https://doi.org/10.1155/2014/360438
Sunar M, Yazici GN, Mammadov R, Kurt N, Arslan YK, Süleyman H. Coenzyme Q10 effect on cisplatin-induced oxidative retinal injury in rats. Cutaneous and Ocular Toxicology. 2021;40(4):312-318. https://doi.org/10.1080/15569527.2021.1949336
Karakurt Y, Süleyman H, Keskin Cimen F, et al. The effects of lutein on optic nerve injury induced by ethambutol and isoniazid: an experimental study. Cutaneous and Ocular Toxicology. 2019;38(2):136-140. https://doi.org/10.1080/15569527.2018.1539010
Icel E, Uçak T, Agcayazi B, et al. Effects of Pycnogenol on cisplatin-induced optic nerve injury: an experimental study. Cutaneous and Ocular Toxicology. 2018;37(4):396-400. https://doi.org/10.1080/15569527.2018.1495224
Goc Z, Szaroma W, Kapusta E, Dziubek K. Protective effects of melatonin on the activity of SOD, CAT, GSH-Px and GSH content in organs of mice after administration of SNP. The Chinese Journal of Physiology. 2017;60 (1):1-10. https://doi.org/10.4077/CJP.2017.BAF435
Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine. 2009;30(1-2):1-12. https://doi.org/10.1016/j.mam.2008.08.006
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition Journal. 2016;15(1):71. https://doi.org/10.1186/s12937-016-0186-5
Ighodaro O, Akinloye O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine. 2018;54(4):287-293. https://doi.org/10.1016/j.ajme.2017.09.001
Yazici GN, Sunar M, Süleyman B, Abdülkadir Çoban T, Kemal Arslan Y, Süleyman H. Effect of pycnogenol on ethanol-related oxidative retinal injury: an experimental study. European Review for Medical and Pharmacological Sciences. 2022;26(14):5225-5232. https://doi.org/10.26355/eurrev_202207_29312
Desco MC, Asensi M, Márquez R, et al. Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol. Diabetes. 2002;51(4):1118-1124. https://doi.org/10.2337/diabetes.51.4.1118
İndir
Yayınlanmış
Nasıl Atıf Yapılır
Sayı
Bölüm
Lisans
Telif Hakkı (c) 2023 Acta Medica Ruha
Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.