The Effects of miR-30a and miR-17 Biomarkers and Methylprednisolone in Experimental Spinal Cord Injury in Rats

Research Article

Authors

  • Ece Uysal University of Health Sciences Turkey, Prof. Dr. Cemil Tascioglu City Hospital
  • Hidayet Safak Cine İstanbul Medeniyet University, Prof. Dr. Suleyman Yalcin City Hospital, Neurosurgery, Turkey, https://orcid.org/0000-0002-0808-5921
  • Suat Erol Celik University of Health Sciences, Istanbul Okmeydanı Edu. and Res. Hospital, Neurosurgery, Turkey https://orcid.org/0000-0003-3825-9854

DOI:

https://doi.org/10.5281/zenodo.8325077

Keywords:

miRNA, methylprednisolone, spinal cord injury, miR-30a, miR-17

Abstract

Introduction: Methylprednisolone, is a neuroprotective steroid with many effective mechanisms such as inflammation, cell blood flow changes, and apoptosis in the early period following spinal cord injury. This study aimed to demonstrate the inhibitory activity of methylprednisolone to prevent early injury through microRNA expressions, which are predicted to play a role in genomic regulation.

Method: This present study was conducted on 56 male Sprague-Dawley rats. All the animals divided into 8 groups which consists of 7 animals each. Laminectomy procedure was performed between levels T5-8. All the groups except the two control groups have been damaged with the Yasargil aneurysm clip for 1 minute at the T5 level. T5-8 spinal cord tissue was removed at the 6th, 12th, and 24th hours after clipping. Methylprednisolone was given to the intraperitoneal cavity only to the clipped groups. As a result of histopathological and immunohistochemical examination, there was a significant decrease in cell necrosis, edema, hemorrhage and white matter-gray matter transition in groups given methylprednisolone. Damaged spinal cord samples excised from all rats. miR-30a and miR-17 gene expression levels were evaluated by quantative PCR method.

Results: miR-30a was significantly upregulated at 12th and 24th hours after spinal cord injury and this rise  was restricted  in the methylprednisolone treated groups.. miR-17 was down-regulated at the 6th hour and and reached its lowest level at the 12th hour.

Conclusion: Methylprednisolone has statistically significant healing effects on spinal cord injury through the mechanism of miR-30a and miR-17.

References

Kang Y, Ding H, Zhou H, et al. Epidemiology of worldwide spinal cord injury: a literature review. Journal of Neurorestoratology. 2017;Volume 6:1-9. doi:10.2147/jn.s143236

Hamilton MG, Mylks ST. Pediatric spinal injury: review of 174 hospital admissions. Journal of Neurosurgery. 1992;77(5):700-704. doi:10.3171/jns.1992.77.5.0700

Guttmann L. Spinal Cord Injuries. Comprehensive Management and Research. London, England: Blackwell Scientific Publications; 1976: 4–7.

Ning GZ, Wu Q, Li YL, Feng SQ. Epidemiology of traumatic spinal cord injury in Asia: a systematic review. J Spinal Cord Med. 2012;35(4):229–239.

Nardone R, Florea C, Höller Y, et al. Rodent, large animal and non-human primate models of spinal cord injury. Zoology (Jena). 2017;123:101-114. doi:10.1016/j.zool.2017.06.004

Kwon BK, Oxland TR, Tetzlaff W. Animal models used in spinal cord regeneration research. Spine (Phila Pa 1976). 2002;27(14):1504-1510.doi:10.1097/00007632-200207150-00005

Noble LJ, Wrathall JR. Spinal cord contusion in the rat: morphometric analyses of alterations in the spinal cord. Exp Neurol. 1985;88(1):135-149. doi:10.1016/0014-4886(85)90119-0

Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME, Dietz V. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma. 2000;17(1):1-17. doi:10.1089/neu.2000.17.1

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-297. doi:10.1016/s0092-8674(04)00045-5

Lai EC, Tomancak P, Williams RW, Rubin GM. Computational identification of Drosophila microRNA genes. Genome Biol. 2003;4(7):R42. doi:10.1186/gb-2003-4-7-r42

Lim LP, Lau NC, Weinstein EG, et al. The microRNAs of Caenorhabditis elegans. Genes Dev. 2003;17(8):991-1008. doi:10.1101/gad.1074403

Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP. Vertebrate microRNA genes. Science. 2003;299(5612):1540. doi:10.1126/science.1080372

Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11(3):241-247. doi:10.1261/rna.7240905

Fu G, Brkic J, Hayder H, Peng C. MicroRNAs in human placental development and pregnancy complications. Int J Mol Sci. (2013) 14:5519–44.

Tüfekci KU, Oner MG, Meuwissen RL, Genç S. The role of microRNAs in human diseases. Methods Mol Biol. 2014;1107:33-50. doi:10.1007/978-1-62703-748-8_3

Paul P, Chakraborty A, Sarkar D, et al. Interplay between miRNAs and human diseases. J Cell Physiol. 2018;233(3):2007-2018. doi:10.1002/jcp.25854

Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20(8):460-469. doi:10.1016/j.molmed.2014.06.005

Wang J, Chen J, Sen S. MicroRNA as Biomarkers and Diagnostics. J Cell Physiol. 2016;231(1):25-30. doi:10.1002/jcp.25056

Huang W. MicroRNAs: Biomarkers, Diagnostics, and Therapeutics. Methods Mol Biol. 2017;1617:57-67. doi:10.1007/978-1-4939-7046-9_4

Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol.2014;15:509–24.

de Rie D, Abugessaisa I, Alam T, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol. 2017;35(9):872-878. doi:10.1038/nbt.3947

Kim YK, Kim VN. Processing of intronic microRNAs. EMBO J. 2007;26(3):775-783. doi:10.1038/sj.emboj.7601512

Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. J Mol Biol. 2004;339(2):327-335. doi:10.1016/j.jmb.2004.03.065

O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne). 2018;9:402. Published 2018 Aug 3. doi:10.3389/fendo.2018.00402

Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12(2):99-110. doi:10.1038/nrg2936

Ipsaro JJ, Joshua-Tor L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol. 2015;22(1):20-28. doi:10.1038/nsmb.2931

Xu W, San Lucas A, Wang Z, Liu Y. Identifying microRNA targets in different gene regions. BMC Bioinformatics. 2014;15 Suppl 7(Suppl 7):S4. doi:10.1186/1471-2105-15-S7-S4

Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci U S A. 2008;105(39):14879-14884. doi:10.1073/pnas.0803230105

Zhang J, Zhou W, Liu Y, Liu T, Li C, Wang L. Oncogenic role of microRNA-532-5p in human colorectal cancer via targeting of the 5'UTR of RUNX3. Oncol Lett. 2018;15(5):7215-7220. doi:10.3892/ol.2018.8217

Kato M, Slack FJ. microRNAs: small molecules with big roles - C. elegans to human cancer. Biol Cell. 2008;100(2):71-81. doi:10.1042/BC20070078

Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113(1):25-36. doi:10.1016/s0092-8674(03)00231-9

Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell. 2000;5(4):659-669. doi:10.1016/s1097-2765(00)80245-2

Abrahante JE, Daul AL, Li M, et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell. 2003;4(5):625-637. doi:10.1016/s1534-5807(03)00127-8

Moss EG, Lee RC, Ambros V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell. 1997;88(5):637-646. doi:10.1016/s0092-8674(00)81906-6

Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843-854. doi:10.1016/0092-8674(93)90529-y

Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 2003;426(6968):845-849. doi:10.1038/nature02255

Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature2005; 436: 214-220.

Stark A, Brennecke J, Russell RB, Cohen SM. Identification of Drosophila MicroRNA targets. PLoS Biol. 2003;1(3):E60. doi:10.1371/journal.pbio.0000060

Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524-15529. doi:10.1073/pnas.242606799

Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226-230. doi:10.1038/nature03076

Giraldez AJ, Cinalli RM, Glasner ME, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308(5723):833-838. doi:10.1126/science.1109020

Young W, Flamm ES. Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. J Neurosurg. 1982;57(5):667-673. doi:10.3171/jns.1982.57.5.0667

Anderson DK, Saunders RD, Demediuk P, et al. Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and selenium. Cent Nerv Syst Trauma. 1985;2(4):257-267. doi:10.1089/cns.1985.2.257

Bracken MB, Shepard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. JAMA. 1997;277(20):1597-1604.

Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220(2):126-139. doi:10.1002/path.2638

Kosik KS. The neuronal microRNA system. Nat Rev Neurosci. 2006;7(12):911-920. doi:10.1038/nrn2037

Bilen J, Liu N, Burnett BG, Pittman RN, Bonini NM. MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol Cell. 2006;24(1):157-163. doi:10.1016/j.molcel.2006.07.030

Bak M, Silahtaroglu A, Møller M, et al. MicroRNA expression in the adult mouse central nervous system. RNA. 2008;14(3):432-444. doi:10.1261/rna.783108

Liu NK, Wang XF, Lu QB, Xu XM. Altered microRNA expression following traumatic spinal cord injury. Exp Neurol. 2009;219(2):424-429. doi:10.1016/j.expneurol.2009.06.015

Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol. 2008;20(2):214-221. doi:10.1016/j.ceb.2008.01.006

Nakanishi K, Nakasa T, Tanaka N, et al. Responses of microRNAs 124a and 223 following spinal cord injury in mice. Spinal Cord. 2010;48(3):192-196. doi:10.1038/sc.2009.89

Yunta M, Nieto-Díaz M, Esteban FJ, et al. MicroRNA dysregulation in the spinal cord following traumatic injury. PLoS One. 2012;7(4):e34534. doi:10.1371/journal.pone.0034534

Jee MK, Jung JS, Choi JI, et al. MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury [published correction appears in Brain. 2013 Aug;136(Pt 8):2643]. Brain. 2012;135(Pt 4):1237-1252. doi:10.1093/brain/aws047

Budde H, Schmitt S, Fitzner D, Opitz L, Salinas-Riester G, Simons M. Control of oligodendroglial cell number by the miR-17-92 cluster. Development. 2010;137(13):2127-2132. doi:10.1242/dev.050633

Chang TC, Yu D, Lee YS, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40(1):43-50. doi:10.1038/ng.2007.30

Hong P, Jiang M, Li H. Functional requirement of dicer1 and miR-17-5p in reactive astrocyte proliferation after spinal cord injury in the mouse. Glia. 2014;62(12):2044-2060. doi:10.1002/glia.22725

Wei W, Yang Y, Cai J, et al. MiR-30a-5p Suppresses Tumor Metastasis of Human Colorectal Cancer by Targeting ITGB3. Cell Physiol Biochem. 2016;39(3):1165-1176. doi:10.1159/000447823

Saravanan S, Thirugnanasambantham K, Hanieh H, et al. miRNA-24 and miRNA-466i-5p controls inflammation in rat hepatocytes. Cell Mol Immunol. 2015;12(1):113-115. doi:10.1038/cmi.2014.67

Downloads

Published

2023-09-20

How to Cite

Uysal, E., Cine, H. S., & Celik, S. E. (2023). The Effects of miR-30a and miR-17 Biomarkers and Methylprednisolone in Experimental Spinal Cord Injury in Rats: Research Article. Acta Medica Ruha, 1(3), 394–409. https://doi.org/10.5281/zenodo.8325077

Issue

Section

Research Articles