The Relationship Of Free ß-hCG, PAPP-A, AFP, ß-hCG, UE3 In Pregnancy With Fac, 50 Gram Glucose Screening Test And Birth Weight

Research Article

Authors

DOI:

https://doi.org/10.5281/zenodo.8262574

Keywords:

gestational diabetes mellitus, abnormal birth weight, pregnancy-associated plasma protein-A (PAPP-A), trimester, unconjugated estriol (uE3)

Abstract

Objective: It is possible to improve the quality of health and care and to minimize high-cost medical expenses by closely monitoring the complications in infants born with abnormal fetal birth weights. Within the scope of this research, we aimed to elucidate the relationship between first and second-trimester screening tests plasma proteins and 50 g glucose tolerance test values used in gestational diabetes screening with estimated birth weight.

Method: A total of 831 cases with regular antenatal follow-ups in Ankara Atatürk Training and Research Hospital, Gynecology, and Obstetrics Clinic were enrolled. The first- trimester fetal aneuploidy screening determined PAPP-A and free-β-hCG values. The second- trimester triple test determined Alpha-feto protein, hCG, and unconjugated estriol values. Fasting blood glucose was measured at the first visit, and a 50 g oral glucose tolerance test (OGTT) was performed between 24 – 28 weeks of gestation. Pregnancies continued without complications and who gave birth at term (gestational age 37+0 weeks) were included in the study.

Results: When the relationship between the hormonal values used in the first and second-trimester aneuploidy screening and the 50 gr OGTT (mg/dl) values are examined, no correlation between free-beta-hCG and 50 g OGTT (mg/dl) (r= -0.055, p= 0.128). Maternal fasting blood glucose levels (r= -0.055, p= 0.131) did not reveal any relationship with first and second-trimester aneuploidy screening. PAPP-A (r= - 0.011, p= 0.765), AFP (r= -0.033, p= 0.369), uE3 (r= 0.035, p= 0.340). (Figure 14), and hCG values (r= -0.051, p= 0.164), also did not present correlation with maternal fasting blood glucose levels.

Conclusion: According to the results of our study, no relationship was found between the hormones used in the first trimester (PAPP-A and free-beta-hCG) and second-trimester (AFP, hCG, and uE3) aneuploidy screening and 50 g OGTT, maternal plasma blood glucose level and birth weight.

References

Sweeting A, Wong J, Murphy HR, Ross GP. A Clinical Update on Gestational Diabetes Mellitus. Endocr Rev. 2022;43(5):763-793. doi:10.1210/endrev/bnac003

Karavasileiadou S, Almegwely W, Alanazi A, Alyami H, Chatzimichailidou S. Self-management and self-efficacy of women with gestational diabetes mellitus: a systematic review. Glob Health Action. 2022;15(1):2087298. doi:10.1080/16549716.2022.2087298

Sharma AK, Singh S, Singh H, et al. Deep Insight of the Pathophysiology of Gestational Diabetes Mellitus. Cells. 2022;11(17):2672. doi:10.3390/cells11172672

Huang T, Bellai-Dussault K, Meng L, et al. First and second trimester maternal serum markers for prenatal aneuploidy screening: An update on the adjustment factors for race, smoking, and insulin dependent diabetes mellitus. Clin Biochem. 2023;118:110596. doi:10.1016/j.clinbiochem.2023

Yildiz A, Yozgat ST, Cokmez H, Yildiz FŞ. The predictive value of the first trimester combined test for gestational diabetes mellitus. Ginekol Pol. 2023;94(5):395-399. doi:10.5603/GP.a2022.0036

Giorgione V, Quintero Mendez O, Pinas A, Ansley W, Thilaganathan B. Routine first-trimester pre- eclampsia screening and risk of preterm birth. Ultrasound Obstet Gynecol. 2022;60(2):185-191. doi:10.1002/uog.24915

Yang Z, Wang S, Zheng R, et al. Value of PAPP-A combined with BMI in predicting the prognosis of gestational diabetes mellitus: an observational study. J Obstet Gynaecol. 2022;42(7):2833-2839. doi:10.1080/01443615.2022.2109951

Cui J, Li P, Chen X, et al. Study on the Relationship and Predictive Value of First-Trimester Pregnancy-Associated Plasma Protein-A, Maternal Factors, and Biochemical Parameters in Gestational Diabetes Mellitus: A Large Case-Control Study in Southern China Mothers. Diabetes Metab Syndr Obes. 2023;16:947-957. doi:10.2147/DMSO.S398530

Yanachkova V, Staynova R, Stankova T, Kamenov Z. Placental Growth Factor and Pregnancy- Associated Plasma Protein-A as Potential Early Predictors of Gestational Diabetes Mellitus. Medicina (Kaunas). 2023;59(2):398. doi: 10.3390/medicina59020398

Wicklow B, Retnakaran R. Gestational Diabetes Mellitus and Its Implications across the Life Span. Diabetes Metab J. 2023;47(3):333-344. doi:10.4093/dmj.2022.0348

Bukhari I, Iqbal F, Thorne RF. Editorial: Relationship between gestational and neonatal diabetes mellitus. Front Endocrinol (Lausanne). 2022;13:1060147. doi:10.3389/fendo.2022.1060147

Malaza N, Masete M, Adam S, Dias S, Nyawo T, Pheiffer C. A Systematic Review to Compare Adverse Pregnancy Outcomes in Women with Pregestational Diabetes and Gestational Diabetes. Int J Environ Res Public Health. 2022;19(17):10846. doi:10.3390/ijerph191710846

Nolan CJ. Gestational Diabetes Mellitus and the Maternal Heart. Diabetes Care. 2022;45(12):2820-2822. doi:10.2337/dci22-0036

Shen Y, Zheng Y, Su Y, et al. Insulin sensitivity, β cell function, and adverse pregnancy outcomes in women with gestational diabetes. Chin Med J (Engl). 2022;135(21):2541-2546. doi:10.1097/CM9.0000000000002337

Blasetti A, Quarta A, Guarino M, et al. Role of Prenatal Nutrition in the Development of Insulin Resistance in Children. Nutrients. 2022;15(1):87. doi: 10.3390/nu15010087

Thaweethai T, Soetan Z, James K, Florez JC, Powe CE. Distinct Insulin Physiology Trajectories in Euglycemic Pregnancy and Gestational Diabetes Mellitus. Diabetes Care. 2023;1:dc222226. doi:10.2337/dc22-2226

Kabbani N, Blüher M, Stepan H, et al. Adipokines in Pregnancy: A Systematic Review of Clinical Data. Biomedicines. 2023;11(5):1419. doi:10.3390/biomedicines11051419

Gibson C, de Ruijter-Villani M, Stout TAE. Insulin-like growth factor system components expressed at the conceptus-maternal interface during the establishment of equine pregnancy. Front Vet Sci. 2022;9:912721. doi:10.3389/fvets.2022.912721

Conover CA, Oxvig C. The Pregnancy-Associated Plasma Protein-A (PAPP-A) Story. Endocr Rev. 2023;2:bnad017. doi:10.1210/endrev/bnad017

Savvidou MD, Syngelaki A, Muhaisen M, Emelyanenko E, Nicolaides KH. First trimester maternal serum free β-human chorionic gonadotropin and pregnancy-associated plasma protein A in pregnancies complicated by diabetes mellitus. BJOG. 2012;119(4):410-6. doi:10.1111/j.1471-0528.2011.03253.x

Papamichail M, Fasoulakis Z, Daskalakis G, Theodora M, Rodolakis A, Antsaklis P. Importance of Low Pregnancy Associated Plasma Protein-A (PAPP-A) Levels During the First Trimester as a Predicting Factor for Adverse Pregnancy Outcomes: A Prospective Cohort Study of 2636 Pregnant Women. Cureus. 2022;14(11):e31256. doi:10.7759/cureus.31256

Movahedi M, Khanjani S, Shahshahan Z, Hajihashemi M, Farahbod F, Shahsavandi E. Evaluation of the Relationship between Pregnancy-Associated Plasma Protein A (PAPP-A) and Pregnancy Outcomes. Adv Biomed Res. 2023;12:91. doi:10.4103/abr.abr_344_21

Caron L, Ghesquiere L, Bujold E. Pregnancy associated plasma protein-A for the prediction of small for gestational age. J Perinat Med. 2023;51(5):718-719. doi:10.1515/jpm-2022-0545

Villar J, Ochieng R, Gunier RB, et al. Association between fetal abdominal growth trajectories, maternal metabolite signatures early in pregnancy, and childhood growth and adiposity: prospective observational multinational INTERBIO-21st fetal study. Lancet Diabetes Endocrinol. 2022;10(10):710-719. doi:10.1016/S2213-8587(22)00215-7

Habayeb O, Daemen A, Timmerman D, et al. The relationship between first trimester fetal growth, pregnancy-associated plasma protein A levels and birthweight. Prenat Diagn. 2010;30(9):873-8. doi:10.1002/pd.2578

Pedersen JF, Sørensen S, Mølsted-Pedersen L. Serum levels of human placental lactogen, pregnancy-associated plasma protein A and endometrial secretory protein PP14 in first trimester of diabetic pregnancy. Acta Obstet Gynecol Scand. 1998;77(2):155-8.

Bader D, Riskin A, Vafsi O, et al. Alpha-fetoprotein in the early neonatal period--a large study and review of the literature. Clin Chim Acta. 2004;349(1-2):15-23. doi:10.1016/j.cccn.2004.06.020

Roig MD, Sabrià J, Valls C, et al. The use of biochemical markers in prenatal diagnosis of intrauterine growth retardation: insulin-like growth factor I, Leptin, and alpha-fetoprotein. Eur J Obstet Gynecol Reprod Biol. 2005;120(1):27-32. doi:10.1016/j.ejogrb.2004.07.028

Morris RK, Cnossen JS, Langejans M, et al. Serum screening with Down's syndrome markers to predict pre-eclampsia and small for gestational age: systematic review and meta-analysis. BMC Pregnancy Childbirth. 2008;8:33. doi:10.1186/1471-2393-8-33

Nagata C, Iwasa S, Shiraki M, Shimizu H. Estrogen and alpha-fetoprotein levels in maternal and umbilical cord blood samples in relation to birth weight. Cancer Epidemiol Biomarkers Prev. 2006;15(8):1469-72. doi:10.1158/1055-9965.EPI-06-0158

Downloads

Published

2023-09-20

How to Cite

Gezegen, S. (2023). The Relationship Of Free ß-hCG, PAPP-A, AFP, ß-hCG, UE3 In Pregnancy With Fac, 50 Gram Glucose Screening Test And Birth Weight: Research Article. Acta Medica Ruha, 1(3), 335–344. https://doi.org/10.5281/zenodo.8262574

Issue

Section

Research Articles