Emerging Paradigms in Cardiovascular Medicine: The Role of Biomarkers, Artificial Intelligence, and Gut Microbiota in Personalized Therapy — The Evolving Landscape of Cardiovascular Care

Review Article

Authors

DOI:

https://doi.org/10.5281/zenodo.17162872

Keywords:

Cardiovascular Diseases, Biomarker, Artificial Intelligence, Microbiota, Personalized Medicine

Abstract

Introduction: Cardiovascular diseases (CVDs) remain one of the leading causes of morbidity and mortality worldwide. While conventional diagnostic and therapeutic methods have made significant contributions, they may fall short in detecting the disease at early stages and in developing personalized treament strategies.

Objective: This review discusses three innovative approaches—biomarker-based analyses, artificial intelligence (AI)-assisted decision systems, and gut microbiota-focused applications—that have rapidly advanced in recent years and are expanding in their potential clinical applications.

Methods: With the advent of next-generation biomarkers (e.g., soluble urokinase-type plasminogen activator receptor [suPAR], suppression of tumorigenicity 2 [ST2], galectin-3, and growth differentiation factor-15 [GDF-15]), processes such as heart failure, myocardial injury, and vascular inflammation can now be assessed more sensitively and at earlier stages.

Results: AI algorithms accelerate and enhance diagnostic accuracy by analyzing imaging data, electrocardiogram (ECG) signals, and multivariate clinical parameters. Meanwhile, the influence of gut microbiota on cardiovascular pathophysiology is increasingly understood, with microbial metabolites such as trimethylamine-N-oxide (TMAO) shown to play a significant role in atherosclerotic processes.

Conclusion: A comprehensive evaluation of these three approaches offers new perspectives for the development of personalized cardiology practices and lays the groundwork for more effective strategies in diagnosis, monitoring, and treatment.

References

Lindstrom M, DeCleene N, Dorsey H, et al. Global Burden of Cardiovascular Diseases and Risks Collaboration, 1990–2021. J Am Coll Cardiol. 2022; 80(5): 2372–425. doi: 10.1016/j.jacc.2022.11.001.

van Daalen KR, Zhang D, Kaptoge S, Paige E, Di Angelantonio E, Pennells L. Risk prediction in the primary prevention of cardiovascular diseases: Considerations for selecting an appropriate risk prediction model. Lancet Glob Health, 2024;12(8):1343–58. doi: 10.1016/S2214-109X(24)00210-9.

Thygesen K, Alpert JS, Jaffe AS, et al. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Circulation. 2018;138(20):618-51. doi: 10.1161/CIR.0000000000000632.

Januzzi JL Jr, Chen-Tournoux AA, Christenson RH, et al. ICON-RELOADED Investigators. N-Terminal Pro-B-Type Natriuretic Peptide in the Emergency Department: The ICON-RELOADED Study. J Am Coll Cardiol. 2018;71(11):1191-1200. doi: 10.1016/j.jacc.2018.01.021.

Hudson MP, Armstrong PW, Ruzyllo W, et al. Effects of Selective Matrix Metalloproteinase Inhibitor (PG-116800) to Prevent Ventricular Remodeling After Myocardial Infarction: Results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling). J Am Coll Cardiol. 2006;48(1):15-20. doi: 10.1016/j.jacc.2006.02.055

Aimo A, Vergaro G, Ripoli A, et al. Meta-analysis of soluble suppression of tumorigenicity-2 and prognosis in acute heart failure. JACC Heart Fail. 2017;5 (4):287-96. doi: 10.1016/j.jchf.2016.12.016.

Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol 2012;60(14): 1249-56. https://doi.org/10.1016/j.jacc.2012.04.053

Emmerson PJ, Duffin KL, Chintharlapalli S, Wu X. GDF15 and Growth Control. Front Physiol. 2018;9:1712. doi: 10.3389/fphys.2018.01712.

Lok SI, Winkens B, Goldschmeding R, et al. Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. Eur J Heart Fail. 2012;14(11):1249-56. https://doi.org/10.1093/eurjhf/hfs120

Zeier M, Reiser J. suPAR and chronic kidney disease - a podocyte story. Pflugers Arch. 2017; 469(7):1017–20. doi: 10.1007/s00424-017-2026-7.

Papageorgiou N, Tousoulis D, Androulakis E, et al. The role of microRNAs in cardiovascular disease. Curr Med Chem. 2012;19(16):2605-10. doi: 10.2174/092986712800493048.

Clerico A, Padoan A, Zaninotto M, Passino C, Plebani M. Clinical relevance of biological variation of cardiac troponins. Clin Chem Lab Med. 2020;59(4):641-52. doi: 10.1515/cclm-2020-1433.

Siravegna G, Bardelli A. Genotyping of cell-free tumor DNA in blood to detect residual disease and drug resistance. Genome Biol. 2014;15:449. https://doi.org/10.1186/s13059-014-0449-4

Reckamp KL, Melnikova VO, Karlovich C, et al. A highly sensitive and quantitative test platform for the detection of NSCLC EGFR mutations in urine and plasma. J. Thorac. Oncol. 2016;11(10):1690–1700. doi: 10.1016/j.jtho.2016.05.035.

Wang Y, Springer S, Mulvey CL, et al. Detection of somatic mutations and HPV in saliva and plasma of patients with head and neck squamous cell carcinomas. Sci. Transl Med. 2015;7(293):293ra104. doi: 10.1126/scitranslmed.aaa8507.

Kimura H, Fujiwara Y, Sone T, et al. EGFR mutation status in tumor-derived DNA from pleural effusion fluid is a practical basis for predicting response to gefitinib. Br. J. Cancer. 200; 95(10):1390–5. doi: 10.1158/1078-0432.CCR-05-2324

De Mattos-Arruda L, Mayor R, Ng CKY, et al. Circulating tumor DNA from cerebrospinal fluid better represents genomic alterations of brain tumors than plasma. Nat. Commun. 2015; 6:8839. doi: 10.1038/ncomms9839.

Diehl F, Schmidt K, Durkee KH, et al. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology. 2008;135(2):489–98. doi: 10.1053/j.gastro.2008.05.039.

Moore KJ, Rayner KJ, Suarez Y, Fernandez-Hernando C. microRNAs and cholesterol metabolism. Trends Endocrinol Metab. 2010;21(12):699–706. doi: 10.1016/j.tem.2010.08.008.

Inouye M, Abraham G, Nelson CP, et al. Genomic Risk Prediction of Coronary Artery Disease in 480,000 Adults: Implications for Primary Prevention. J Am Coll Cardiol. 2018;72(16):1883-93. doi: 10.1016/j.jacc.2018.07.079.

Nie G, Zhao O, Tang G, Li Y, Hong S. Artificial Intelligence-derived Vascular Age from Photoplethysmography: A Novel Digital Biomarker for Cardiovascular Health. 2025; arXiv:2502.12990.

Pankaj, KumarA, Komaragiri R, Kumar M. A review on computation methods used in photoplethysmography signal analysis for heart rate estimation. Archives of Computational Methods in Engineering. 2022;29(2): 921–40. https://doi.org/10.1007/s11831-021-09597-4

Schröder C, Förster R, Zwahlen DR, Windisch P. The apple watch spo2 sensor and outliers in healthy users. NPJ Digit Med. 2023;6(1):63. doi: 10.1038/s41746-023-00814-x.

Williams GJ, Al-Baraikan A, Rademakers FE, et al. Wearable technology and the cardiovascular system: the future of patient assessment. The Lancet Digit Health. 2023;5(7):467–76. doi: 10.1016/S2589-7500(23)00087-0.

Pereira T, Tran N, Gadhoumi K, et al. Photoplethysmography based atrial fibrillation detection: a review. NPJ Dig Med. 2020;3(1):1–12. doi: 10.1038/s41746-019-0207-9.

Elgendi M, Fletcher R, Liang Y, et al. The use of photoplethysmography for assessing hypertension. NPJ Dig Med. 2019;2(1):60. doi: 10.1038/s41746-019-0136-7.

van Velzen SGM, Lessmann N, Velthuis BK, et al. Deep Learning for Automatic Calcium Scoring in CT: Validation Using Multiple Cardiac CT and Chest CT Protocols. Radiology. 2020;295(1):66-79. doi: 10.1148/radiol.2020191621.

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88. doi: 10.1016/j.media.2017.07.005.

Bos JM, Attia ZI, Albert DE, Noseworthy PA, Friedman PA, Ackerman MJ. Use of artificial Intelligence and Deep Neural Networks in evalutaion of patients with electrocardiographically concealed long QT syndrome fromm the surface 12-lead electrocardiogram. JAMA Cardiol. 2021; 6(5):532–8. doi: 10.1001/jamacardio.2020.7422.

Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet, 2019;394(10201):861–7. doi: 10.1016/S0140-6736(19)31721-0.

Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018:1(1):18. doi: 10.1038/s41746-018-0029-1.

Zhong J, Zhao H, Zhao Q, Wang J. ‘A Knowledge Graph-Based Method for Drug-Drug Interaction Prediction with Contrastive Learning’. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2024;21(6): 2485-95. doi: 10.1109/TCBB.2024.3477410.

Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575-84. doi: 10.1056/NEJMoa1109400.

Chen ML, Zhu XH, Ran L, Lang HD, Yi L, Mi MT. Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3-SOD2-mtROS Signaling Pathway. J Am Heart Assoc. 2017;6(9):e006347. doi: 10.1161/JAHA.117.006347.

Haghikia A, Zimmermann F, Schumann P, et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur Heart J. 2022;43(6):518-33. doi: 10.1093/eurheartj/ehab644.

Kummen M, Mayerhofer CCK, Vestad B, et al. Gut Microbiota Signature in Heart Failure Defined From Profiling of 2 Independent Cohorts. J Am Coll Cardiol. 2018;71(10):1184-6. doi: 10.1016/j.jacc.2017.12.057.

Chen JY, Geng QS, Zhang ZW, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. doi: 10.1038/s41467-017-00900-1

Zuo K, Li J, Li K, et. al. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. GigaScience. 2019;8(6):giz058. doi: 10.1093/gigascience/giz058.

Malik M, Suboc TM, Tyagi S, et al. Lactobacillus plantarum 299v Supplementation Improves Vascular Endothelial Function and Reduces Inflammatory Biomarkers in Men With Stable Coronary Artery Disease. Circ Res. 2018;123(9):1091-102. doi: 10.1161/CIRCRESAHA.118.313565.

Wang Z, Bergeron N, Levison BS, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2019;40(7):583-94. doi: 10.1093/eurheartj/ehy799.

De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812-21. doi: 10.1136/gutjnl-2015-309957.

Chen ML, Yi L, Zhang Y, et al. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio. 2016;7(2):e02210-15. https://doi.org/10.1186/s13195-018-0451-2

GBD 2019 Diseases and Injuries Collaborators. The global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the 2019 Global Burden of Disease Study. Lancet. 2020;396:1204–22. doi: 10.1016/S0140-6736(20)30925-9.

Apple FS, Collinson PO; IFCC Task Force on Clinical Applications of Cardiac Biomarkers, Analytical characteristics of high-sensitivity cardiac troponin assays, Clin Chem. 2012;58(1):54–61. doi: 10.1373/clinchem.2011.165795.

Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70(6):776-803. doi: 10.1016/j.jacc.2017.04.025.

Aydın S, Uğur K, Aydın S, Şahin I, Yardım M. Biomarkers in acute myocardial infarction: Current perspectives. Vasc. Health Risk Manag. 2019;15:1–10. doi: 10.2147/VHRM.S166157.

Velasquez MT, Ramezani A, Manal A, Raj DS. Trimethylamine N-Oxide: The Good, the Bad, and the Unknown. Toxins (Basel). 2016;8(11):326. doi: 10.3390/toxins8110326.

Tang WH, Hazen SL The contributing role of gut microbiota in cardiovascular disease. J. Clin. Invest. 2014;124(10):4204–11. doi: 10.1172/JCI72331.

Kaye DM, Shihata W, Jama HA, et al. Prebiotic fiber deficiency and inadequate signaling through intestinal metabolite-sensing receptors lead to cardiovascular disease. Circulation. 2020;141(17):1393–1403. doi: 10.1161/CIRCULATIONAHA.119.043081.

Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: Short-chain fatty acids as essential Bacterial Metabolites. Cell. 2016;165(6):1332–45. doi: 10.1016/j.cell.2016.05.041.

Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. doi: 10.1186/s40168-016-0222-x.

Yin J, Liao SX, He Y, et al. Dysbiosis of Gut Microbiota with Decreased Trimethylamine-N-Oxide Level in Patients with Large Artery Atherosclerotic Stroke or Transient Ischemic Attack. J Am Heart Assoc. 2015;4(11):e002699. doi: 10.1161/JAHA.115.002699.

Beale AL, O'Donnell JA, Nakai ME, et al. The Gut Microbiome of Heart Failure with Preserved Ejection Fraction. J Am Heart Assoc. 2021;10(13): e020654. doi: 10.1161/JAHA.120.020654.

Joe B, McCarthy CG, Edwards JM, et al. Microbiota Infused into Germ-Free Rats Restores Vascular Contraction and Blood Pressure. Hypertension. 2020;76(6):1847–55. doi: 10.1161/HYPERTENSIONAHA.120.15939.

De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812-21. doi: 10.1136/gutjnl-2015-309957.

Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature. 2020;580(7802):252–6. doi: 10.1038/s41586-020-2145-8.

Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine, 2019;25(1):65–9. doi: 10.1038/s41591-018-0268-3.

Downloads

Published

2025-09-20

How to Cite

Ersöz, E. (2025). Emerging Paradigms in Cardiovascular Medicine: The Role of Biomarkers, Artificial Intelligence, and Gut Microbiota in Personalized Therapy — The Evolving Landscape of Cardiovascular Care: Review Article. Acta Medica Ruha, 3(3), 134–142. https://doi.org/10.5281/zenodo.17162872